
Temporal Dynamic Controllability Revisited

Content Areas : Constraint Satisfaction, Temporal Reasoning, Uncertainty

Abstract

An important issue for temporal planners is the
ability to handle temporal uncertainty. We re-
visit the question of how to determine whether a
given set of temporal requirements are feasible in
the light of uncertain durations of some processes.
In particular, we consider how best to determine
whether a network is Dynamically Controllable,
i.e., whether a dynamic strategy exists for executing
the network that is guaranteed to satisfy the require-
ments. Previous work has shown the existence of a
pseudo-polynomial algorithm for testing Dynamic
Controllability. Here, we greatly simplify the pre-
vious framework, and present a true polynomial al-
gorithm with a cutoff based only on the number of
nodes.

1 Introduction
For some time, Constraint-Based Planning systems
(e.g. [Muscettola et al., 1998]) have been using Simple
Temporal Networks (STNs) to test the consistency of partial
plans encountered during the search process. These systems
produce flexible plans where every solution to the final
Simple Temporal Network provides an acceptable schedule.
Many applications, however, involve temporal uncertainty
where the duration of certain processes is not under the
control of the agent using the plan. In these cases, the values
for the variables that are under the agent’s control may need
to be chosen so that they do not constrain uncontrollable
events whose outcomes are still in the future.

Although we are not aware of deployed systems that fully
confront these issues, progress has been made in recent years
on the theoretical front. In[Vidal and Fargier, 1999], sev-
eral notions of controllability are defined, includingDynamic
Controllability. Roughly speaking, a network is dynamically
controllable (DC) if there is a strategy for satisfying the re-
quirements that depends only on knowing the outcomes of
past uncontrollable events.

In [Morris et al., 2001] an algorithm is presented that deter-
mines DC and runs in polynomial time under the assumption
that the maximum size of links in the STN is bounded. The
method involves repeated tightenings based on a considera-
tion of “triangles” (i.e., node triples) in the network. Note that

termination is guaranteed because the maximum link bound
ensures that some domain will become empty after a bounded
number of iterations. Thus, the iteration isO(N3), where
N is the number of nodes in the network. However, the ap-
parent low-order polynomial is misleading, because for many
applications the link bound (and hence the number of itera-
tions) may be very large in practical terms. Looked at an-
other way, if we allow the link sizes to grow, and measure
the problem size in terms of the decimal representations of
the link sizes, the complexity isO(10DN3), whereD is a
bound on the lengths of the decimal representations of the
link sizes. In the parlance of complexity theory, the algo-
rithm is pseudo-polynomial like arc-consistency, rather than
being a true polynomial algorithm. An example of the latter
category is the well-known Bellman-Ford algorithm[Cormen
et al., 1990] for determining consistency of an STN.

Note that the constraint propagation process underlying
Bellman-Ford can be viewed as enforcing arc-consistency.
What makes the algorithm a true polynomial algorithm is
the Bellman-Fordcutoff, which restricts the number of iter-
ations based on the number of nodes in the network. In this
paper, we derive an analogous cutoff method for Dynamic
Controllability checking. We also present several other im-
provements to the approach of[Morris et al., 2001]. The
treatment there involves numerous distinct concepts, includ-
ing diverse reduction and regression operations, that are sub-
stantially simplified in the present paper. The algorithm also
required repeated checks of a special consistency property,
which involved recomputation of the AllPairs network after
every iteration. In this paper, that is replaced by a standard
incremental consistency check. We also show how to refor-
mulate the iterations so they visit a restricted subset of trian-
gles, which reduces the complexity.

2 Background
We restate the basic definitions, as described in[Morris et al.,
2001], and summarize the algorithm presented there.

A Simple Temporal Network (STN) is a graph in which the
edges are labelled with upper and lower numerical bounds.
The nodes in the graph represent temporal events ortime-
points, while the edges correspond to constraints on the dura-
tions between the events. Formally, an STN may be described
as a 4-tuple< N, E, l, u > whereN is a set of nodes,E is a
set of edges, andl : E → <∪{−∞} andu : E → <∪{+∞}



are functions mapping the edges into extended Real Num-
bers that are the lower and upper bounds of the interval of
possible durations. Each STN is associated with adistance
graph[Dechteret al., 1991] derived from the upper and lower
bound constraints. An STN is consistent if and only if the dis-
tance graph does not contain a negative cycle, and this can be
determined by a single-source shortest path propagation such
as in the Bellman-Ford algorithm[Cormenet al., 1990]. To
avoid confusion with edges in the distance graph, we will re-
fer to edges in the STN aslinks.

A Simple Temporal Network With Uncertainty (STNU)
is similar to an STN except the links are divided into two
classes,contingent linksand requirement links. Contingent
links may be thought of as representing causal processes of
uncertain duration; their finish timepoints, calledcontingent
timepoints, are controlled by Nature, subject to the limits im-
posed by the bounds on the contingent links. All other time-
points, calledexecutable timepoints, are controlled by the
agent, whose goal is to satisfy the bounds on the requirement
links. We assume the durations of contingent links vary inde-
pendently, so a control procedure must consider every com-
bination of such durations.

Thus, an STNU is a 5-tuple< N,E, l, u, C >, where
N,E, l, u are as in a STN, andC is a subset of the edges: the
contingent links, the others being called requirement links.
Each contingent link is required to satisfy0 < l(e) < u(e) <
∞. Multiple contingent links with the same finishing points
are not allowed.

Choosing one of the allowed durations for each contingent
link may be thought of as reducing the STNU to an ordinary
STN. Thus, an STNU determines a family of STNs corre-
sponding to the different allowed durations; these are called
projectionsof the STNU.

Given a fixed STNU< N, E, l, u, C >, a scheduleT is a
mapping

T : N → <
whereT (x), writtenTx here, is called thetimeof time-point
x. A schedule isconsistentif it satisfies all the link con-
straints. From a schedule, we can determine the durations
of all contingent links that finish prior to a timepointx. (This
may be viewed as a partial mapping fromC to <.) We call
this theprehistoryof x with respect toT , denoted byT≺x.

An execution strategyS is a mapping

S : P → T
whereP is the set of projections andT is the set of schedules.
An execution strategyS is viable if S(p) is consistent (w.r.t.
p) for each projectionp.

We are now ready to define the various types of controlla-
bility, essentially following[Vidal, 2000].

An STNU isWeakly Controllableif there is a viable execu-
tion strategy. This is equivalent to saying that every projection
is consistent.

An STNU isStrongly Controllableif there is a viable exe-
cution strategyS such that

[S(p1)]x = [S(p2)]x
for each executable timepointx and projectionsp1 andp2.
Thus, a Strong execution strategy assigns a fixed time to each

executable timepoint irrespective of the outcomes of the con-
tingent links.

An STNU isDynamically Controllableif there is a viable
execution strategyS such that

[S(p1)]≺x = [S(p2)]≺x ⇒ [S(p1)]x = [S(p2)]x

for each executable timepointx and projectionsp1 andp2.
Thus, a Dynamic execution strategy assigns a time to each
executable timepoint that may depend on the outcomes of
contingent links in the past, but not on those in the future
(or present). This corresponds to requiring that only informa-
tion available from observation may be used in determining
the schedule. We will usedynamic strategyin the following
for a (viable) Dynamic execution strategy.

It is easy to see from the definitions that Strong Controlla-
bility implies Dynamic Controllability, which in turn implies
Weak Controllability. In this paper, we are primarily con-
cerned with Dynamic Controllability.

It was shown in[Morris et al., 2001] that determining
Dynamic Controllability is tractable, and an algorithm was
presented that ran in polynomial time under the assumption
that the sizes of links were bounded above and below. (As
discussed in the introduction, this may be called pseudo-
polynomial.) We will refer to this in the rest of paper as the
Classic Dynamic Controllability algorithm, or classic algo-
rithm for short.

The classic algorithm involved repeated checking of a spe-
cial consistency property called pseudo-controllability. An
STNU is pseudo-controllableif it is consistent in the STN
sense and none of the contingent links are squeezed, where
a contingent link issqueezedif the other constraints imply a
strictly tighter lower bound or upper bound for the link. The
pseudo-controllability property was tested by computing the
AllPairs graph. The algorithm also involved repeated tighten-
ings of the network that, while preserving the status of DC or
non-DC, made explicit the implicit constraints resulting from
the contingent links. Thus, we can summarize the classic al-
gorithm as follows.

Boolean procedure determineDC()
loop

if not pseudo-controllable
return false;

if no more tightenings exist
return true;

else
implement some tightening;

end loop;
end procedure

The guarantee of termination relied on the fact that if quies-
cence is not reached, then continued tightenings will eventu-
ally empty some domain.

Some of the tightenings involved a novel temporal con-
straint called await. Given a contingent link AB and an-
other link AC, the <B, t> annotation on AC indicates that
execution of the timepoint C is not allowed to proceed until
either any positive amount of time has elapsed after B has oc-
curred or until at leastt units of time have elapsed since A
occurred. Thus, a wait is a ternary constraint involving A, B,



and C. It may be viewed as a lower bound oft on AC that is
interruptible by B. Note that the annotation resembles a bi-
nary constraint on AC. The waits were not used directly to
compute pseudo-controllability, but could result in additional
binary constraints that did play a role in that computation.

In order to describe the tightenings, we introduce the nota-

tion A
[x,y]
=⇒ B to indicate a contingent link with bounds[x, y]

between A and B. It will also be convenient to write this back-
wards asB

[x,y]⇐= A. We use the similar notation ofA
[x,y]−→ B

andB
[x,y]←− A for ordinary links.

We can summarize the tightenings, calledreductions, used
in the classic algorithm as follows. They show new links that
are added when the given pattern is satisfied unless tighter
links already exist.

(Precedes Reduction) Ifu ≥ 0, y′ = y − v, x′ = x− u,

A
[x,y]
=⇒ B

[u,v]←− C adds A
[y′,x′]−→ C

(Unordered Reduction) Ifu < 0, v ≥ 0, y′ = y − v,

A
[x,y]
=⇒ B

[u,v]←− C adds A
<B, y′>−→ C

(Simple Regression) Ify′ = y − v,

A
<B, y>−→ C

[u,v]←− D adds A
<B, y′>−→ D

(Contingent Regression) Ify ≥ 0,B 6= C,

A
<B, y>−→ C

[u,v]⇐= D adds A
<B, y − u>−→ D

(“Unconditional” Reduction) Ifu ≤ x,

B
[x,y]⇐= A

<B, u>−→ C adds A
[u,∞]−→ C

(General Reduction) Ifu > x,

B
[x,y]⇐= A

<B, u>−→ C adds A
[x,∞]−→ C

The “Unconditional” Reduction is so-called because in this
situation the full impact of the ternary<B, u> constraint is
capturned by the binary[u,∞] bound without having to split
it into cases. By contrast, in the General Reduction the in-
ferred binary constraint is weaker than the ternary constraint.

We also note that in the classic algorithm, the tightenings
are applied to edges in the AllPairs graph (computed as part of
the determination of pseudo-controllability). However, they
are valid for any edges.

3 Simplifications
As mentioned earlier, an ordinary STN has an alternative rep-

resentation as adistance graph, in which a linkA
[x,y]−→ B is

replaced by two edgesA
y−→ B andA −x←− B, where they

and−x annotations are calledweights. Edges with a weight
of ∞ are omitted. The distance graph may be viewed as an
STN in which there are only upper bounds. This allows short-
est path methods to be used to compute consistency[Dechter
et al., 1991].

In this paper we introduce an analogous alternative rep-
resentation for an STNU called thelabelled distance graph.

This is actually a multigraph (which allows multiple edges
between two nodes), but we refer to it as a graph in this paper
for simplicity. In the labelled distance graph, each require-

ment linkA
[x,y]−→ B is replaced by two edgesA

y−→ B and

A −x←− B, just as in an STN. For a contingent linkA
[x,y]
=⇒ B,

we have the same two edgesA
y−→ B andA −x←− B, but

we also have two additional edges of the formA b:x−→ B and

A
B:−y←− B. These are calledlabelled edgesbecause of the ad-

ditional “b:” and “B:” annotations indicating the contingent
timepoint B with which they are associated. Note the rever-
sal in the roles of x and y in the labelled edges. We refer to

A
B:−y←− B andA b:x−→ B asupper-caseandlower-caseedges,

respectively. Note that the upper-case label B:-y is the value
the edge would have in a projection where the contingent link
takes on its maximum value, whereas the lower-case label
corresponds to the contingent link minimum value.

We also provide a representation for aA
<B, t>−→ C con-

straint in the labelled distance graph. This corresponds to a

single edgeA B:−t←− C. Note the analogy to a lower bound.
Also note that this is consistent with the lower bound that
would occur in a projection where the contingent link has its
maximum value.

We now introduce new simplified tightenings in terms of
the labelled distance graph. The first four categories of tight-
ening from the classic algorithm are replaced by what is es-
sentially a single reduction with different flavors. These are:

(Upper-Case Reduction) Ify ≥ 0,

A B:x←− C
y←− D adds A

B:(x+y)←− D

(Lower-Case Reduction) Ifx ≤ 0,

A x←− C
c:y←− D adds A

x+y←− D

(Cross-Case Reduction) Ifx ≤ 0, C 6= B,

A B:x←− C
c:y←− D adds A

B:(x+y)←− D

(No-Case Reduction)

A x←− C
y←− D adds A

x+y←− D
As one might expect, if a reduction adds an edge where

another edge with the same start, end and label already exists,
then the tighter of the two edges is retained and the other
discarded.

It is straightforward to see that the new reductions are sanc-
tioned by the old ones. (We will defer for the moment the con-
sideration of the reverse direction.) First note that, as applied
to B:x in a wait, the Upper-Case and Cross-Case Reductions
are simple transliterations to the new notation of the Simple
and Contingent Regressions, respectively. As applied to B:x
in the representation of a contingent link, the Upper-Case Re-
duction follows from the Unordered Reduction using [−∞,y]
as the bound. Note that the Cross-Case Reduction will never
be applied to a B:x from a contingent link, since contingent
links do not share finishing points. Finally, note that No-Case
Reduction is just composition of ordinary edges. (The reason
for including this will become clear below.)



Observe that upper-case labels can “move” in the sense that
they can apply to new edges as a result of reductions (but the
targets of the edges do not change), whereas the lower-case
edges are fixed, i.e., the reductions do not produce new ones.

In place of the Unconditional and General Reductions, we
will have a single reduction.

(Label Removal Reduction) Ifz ≥ −x,

B b:x←− A B:z←− C adds A z←− C

This is simply a transliteration of the Unconditional Re-
duction to the new notation.

Our next simplification involves the special consistency
test that is applied before each iteration in the classic algo-
rithm. Instead of testing for the complex property of pseudo-
controllability, we will check for ordinary consistency of the
AllMax projection, where we define the AllMax projection to
be the STN where all the contingent links take on their max-
imum values. Observe that the distance graph of the AllMax
projection can be obtained from the labelled distance graph
by (1) deleting all lower-case edges, and (2) removing the la-
bels from all upper-case edges.

Note that it is correct to conclude that a network is not DC
if the AllMax projection is inconsistent, since this excludes
Weak Controllability, which in turn excludes Dynamic Con-
trollability.

Suppose we now take the classic algorithm for Dynamic
Controllability, and modify it by replacing the old reduc-
tions/regressions with the new, and replacing the pseudo-
controllability test with the AllMax consistency test. We will
call this thebaseline algorithm. It follows from the previous
discussion that the algorithm will give correct “no” answers.
We now consider the opposite direction, and show that it will
also still give correct “yes” answers.

Theorem 1 If the baseline algorithm returns true then the
network is dynamically controllable.

Proof:
We will show the old reductions are either emulated by the

new ones, or are unnecessary in the new framework. We also
prove that it is unnecessary to directly test whether a contin-
gent link is squeezed.

First, as noted previously, the two regressions are translit-
erations of the Upper-Case and Cross-Case Reductions as ap-
plied to waits, and the Unconditional Reduction is a translit-
eration of Label Removal. Thus, they are emulated.

Next consider the Precedes Reduction

(Precedes Reduction) Ifu ≥ 0, y′ = y − v, x′ = x− u,

A
[x,y]
=⇒ B

[u,v]←− C adds A
[y′,x′]−→ C

and suppose that its pattern is satisfied.
After applying both the Upper-Case and Lower-Case re-

ductions to the labelled distance graph, we reach the follow-
ing situation:

A x′

−→ C
B:−y′

−→ A
Then eithery′ > x′, in which case both algorithms detect in-
consistency, ory′ ≤ x′ ≤ x, in which case the Label Removal
Reduction applies. The result then emulates the Precedes Re-
duction.

We note that the Unordered Reduction is directly emulated
by the Upper-Case Reduction.

Next we show that the checks for contingent-link squeez-
ing that occur in pseudo-controllability testing are unneces-
sary. Suppose first an upper bound on a contingent link is
squeezed, i.e., we have

A
B:−y←− B z←− A

wherez < y. Note that the Upper-Case Reduction is appli-

cable, givingA
B:(−y+z)←− A, after which AllMax consistency

testing detects a negative self-loop. Next consider where the
lower bound is squeezed, i.e.,

A b:x−→ B z−→ A

wherez < −x. Applying the Lower-Case Reduction gives

A x+z−→ A, after which consistency testing detects a negative
self-loop.

The other purpose fulfilled by pseudo-controllability test-
ing was to compute the tight links of the All-Pairs graph. This
task is now taken over by the No-Case Reduction. (Thus,
the computation of tight links is interleaved with other reduc-
tions.)

It only remains to show that the General Reduction is un-
necessary. An examination of the correctness proof in[Mor-
ris et al., 2001] shows that this reduction is only needed to
prevent deadlock, where a cycle exists in which each link
has either a positive lower-bound or a positive wait. In the
new framework, this task is fulfilled by the AllMax consis-
tency testing, which would detect such a loop as an ordinary
negative cycle. Thus, the correctness proof for the classic al-
gorithm can be adapted to show correctness of the baseline
algorithm, without the need for the General Reduction.

2

4 Cutoff Algorithm
Now that we have a simplified framework, we can proceed to
improve on the baseline algorithm. Our first task is to obtain
a cutoff bound analogous to that of Bellman-Ford, rather than
depending for termination on the domain size, which could
be large.

We will focus on the “Case” (including No-Case) reduc-
tions, because those are ones that can be applied repetitously.
We regard such a reduction as a repetition if the particular
node triple and configuration of labels (if any) has occurred
before. For example, if the Lower-Case reduction is applied
to

A −1←− B b:10←− C
and later (after BA has tightened to -2), it is applied to

A −2←− B b:10←− C

we consider that a repetition.
Note that if a repetition occurs, then at least one of the

participating edges must have a tighter weight (or labelled
weight) than its previous value. This leads us to define the
parentof the result edge from a repetition to be the partici-
pating edge that tightened. If both participating edges have



been tightened, one is chosen arbitrarily. Also, in a reduction
that is occurring for the first time, the parent can be chosen
arbitrarily.

Next we observe that during the operation of the baseline
algorithm, the labelled distance graph (actually a multigraph,
as noted earlier) has at mostN2 + NK + K edges, where
N is the number of nodes andK is the number of contingent
timepoints. HereN2 is a bound on the number of ordinary
edges. The number of upper-case edges is limited to NK be-
cause the reductions preserve the property that an upper-case
edge always points to the source of its contingent link. Thus,
for each contingent link we can have at mostN upper-case
edges. Also recall that the lower-case edges are fixed so there
are exactlyK of them.

The bound means that if a parent chain becomes longer
thanN2 + NK + K, then it must contain a repeated edge.
Note the “Case” reductions have a linearity property where a
tightening of the parent is transmitted to the child without any
attenuation. Moreover, a reduction that is applicable will still
be applicable if a parent is tightened further. This implies that
any repetition in the parent chain will lead to continued repe-
titions until some domain is exhausted. Thus, the network is
not DC in this situation.

Next we note that the edges added in thei-th iteration of
the baseline algorithm must have parent chains that contain at
leasti parents. We conclude that we can useN2+NK+K as
a cutoff analogous to Bellman-Ford, and terminate with false
if that number of iterations is exceeded.

This leads to the following algorithm for Dynamic Con-
trollability, which we term thebasic-cutoff algorithm.

Boolean procedure determineDC()
loop for iter from 1 to (Nˆ2 + NK + K)

if AllMax projection inconsistent
return false;

Perform any No-Case tightenings;
for each Upper-Case edge e do

for each node B do
Perform Upper-Case tightenings

that involve e and B;
Perform Cross-Case tightenings

that involve e and B;
for each Lower-Case edge e do

for each node B do
Perform Lower-Case tightenings

that involve e and B;
if no tightenings were found above

return true;
for each Upper-Case edge e do

Perform applicable Label Removals;
end loop;
return false;
end procedure

We can analyze the complexity of each iteration as follows.
For the No-Case tightenings we need only look at triangles
of ordinary edges. This phase has complexityO(N3). The
Upper-Case phase has complexityO(KN2) since there are at
mostKN upper-case edges. The Lower-Case phase clearly
has complexityO(KN), and the Label Removals also have

complexityO(KN). Since theO(KN2) andO(KN) terms
are dominated byO(N3), the overall complexity of each
iteration, excluding AllMax consistency testing, isO(N3).
The total complexity is thenO(N5), since there are at most
N2 + NK + K iterations. The AllMax consistency testing
can be done using an incremental Bellman-Ford algorithm
as in [Cervoni et al., 1994]. The amortized complexity is
O(E′N), whereE′ is the final number of edges. Note that
E′ is bounded by(N2 + KN + K). Thus, this is dominated
by theO(N5) complexity derived above.

5 Refined Algorithm
We can do better if we can either reduce the scope of the in-
ner loop, or reduce the size of the set from which the parents
are taken (which would reduce the cutoff bound). As it turns
out, we can do both by exploiting the following observation.
Notice that the AllMax consistency testing takes full account
of upper-case edge values (with the labels removed), but ig-
nores lower-case edges. Thus, if we can “eliminate the need”
for the lower-case edges, the consistency testing takes care of
the remaining interactions.

To make this more precise, define thereduced distanceof
any path in the labelled distance graph to be that obtained by
summing the numerical values on the edges without regard to
any labels. Notice that new paths created by reductions pre-
serve the reduced distance. The reductions (in particular the
lower-case and cross-case ones) may be viewed as converting
reduced distances to distances in the AllMax projection by
providing an alternative path that is free of lower-case edges.
This suggests that we might be able to restrict the reductions
so that they only add edges that are needed to support the
creation of the alternative paths.

We will show this can be achieved by restricting the Upper-
Case and No-Case Reductions so that they only apply when
D is a contingent timepoint, i.e., the target of a contingent
link. With these restrictions, applications of the two reduc-
tions behave essentially as a propagation forward from each
contingent timepoint. This reduces the scope of all the re-
ductions to only adding edges that emanate from the start or
end of a contingent link. (The Lower-Case and Cross-Case
Reductions already satisfy this restriction.) We have the fol-
lowing theorem.

Theorem 2 Any effect on AllMax distances of the unre-
stricted reductions can also be achieved by the restricted re-
ductions.

Proof:
Using the unrestricted reductions, consider any application

α of a Cross-Case or Lower-Case Reduction (the only ones
that can tighten AllMax distances) during the course of the
algorithm. Suppose the reduction is applied toA←− C

c:y←−
D where CA has a negative (possibly upper-labelled) value.

If we “unwind” all the reductions precedingα back to
the start, we can identify a path in the original labelled dis-
tance graph that is the preimage orprecursorof the CA edge.
(Since the lower-case edges are fixed, the precursor of the DC
edge is itself.)

We will focus on the propagation forward from C to A sup-
ported by the restricted reductions. We need to show that this



will allow the DC lower-case edge to be bypassed on some
subpath of the DA path. Notice that if the propagation is not
“blocked” and reaches A then theα application can again be
applied to achieve this.

Consider first the special case where there are no lower-
case edges between C and A. Then repetitions of the No-Case
Reduction will allow propagation forward from C until we
reach some upper-case edge B’A’. At that point, we have the
following situation:

A′ B′:x←− B′
y←− C c:z←− D

Supposeu is the lower bound of the A’B’ contingent link.
Note that ifx + y ≥ −u, then we can apply an upper-case
reduction followed by label removal to eliminate the B’ label
from the path and continue. Ifx + y < −u and B’6=C, we
can apply an upper-case followed by a cross-case reduction
to immediately bypass DC. Otherwise, since the unrestricted
propagations were able to eliminate B’, there must be some
node E between C and B’ such thatx+EB′ ≥ −u and hence
CE must be negative. In this case, we can apply a lower-case
reduction immediately to bypass DC. Thus, in all cases we
can convert the reduced distance on the DA path to an AllMax
distance.

Next consider the general case where there may be lower-
case edges between C and B. These must have been bypassed
in the unrestricted case by applications of the lower-case or
cross-case reductions. We will call the node that participates
as the “A” node in those applications theannihilator of the
lower-case edge. It is easy to see that in the precursor path,
the pairs consisting of a lower-case edge and its annihilator
must be “bracketed” in the sense that two such pairs must ei-
ther be nested or disjoint. Then the innermost pair of each
nested group will consist of a lower-case edge and its anni-
hilator without any intermediate lower-case edges. Thus, we
can apply the method for the special case above repeatedly in
an “inside-out” fashion to eliminate all the lower-case edges
from the path.

2

The restricted application of tightenings allows us to mod-
ify the no-case and upper-case phases of the basic-cutoff al-
gorithm as follows.

Boolean procedure determineDC()
loop for iter from 1 to (Nˆ2 + NK + K)

if AllMax projection inconsistent
return false;

! Perform restricted No-Case tightenings;
for each Upper-Case edge e do

! for each contingent node B do
Perform Upper-Case tightenings

that involve e and B;
Perform Cross-Case tightenings

that involve e and B;
for each Lower-Case edge e do

for each node B do
Perform Lower-Case tightenings

that involve e and B;
if no tightenings were found above

return true;

for each Upper-Case edge e do
Perform applicable Label Removals;

end loop;
return false;
end procedure

We call the modified algorithm therefined-cutoffalgorithm
for Dynamic Controllability.

Note that this reduces the complexity of the no-case phase
to O(E′K), whereE′ = E + NK is a bound on the final
number of edges in the network. The upper-case phase now
has complexityO(NK2). The dominant term isO(E′K),
which also dominates the other phases in the iteration. More-
over, all of the parents in the parent chain analysis are now
chosen from a set of sizeO(NK). Thus, the total complexity
can be estimated asO(E′NK2), which is equivalent toK2

times the cost of a Bellman-Ford in an STN withE′ edges.

6 Closing Remarks
Other recent work has focused on combining DC rea-
soning with preferences[Rossi et al., 2004] or probabili-
ties [Tsamardinoset al., 2003]. In this paper, we have revis-
ited the foundation to place it on a simpler and more efficient
footing.

References
[Cervoniet al., 1994] R. Cervoni, A. Cesta, and A. Oddi.

Managing dynamic temporal constraint networks. InProc.
AIPS-94, pages 13–20, 1994.

[Cormenet al., 1990] T.H. Cormen, C.E. Leiserson, and
R.L. Rivest.Introduction to Algorithms. MIT press, Cam-
bridge, MA, 1990.

[Dechteret al., 1991] R. Dechter, I. Meiri, and J. Pearl. Tem-
poral constraint networks.Artificial Intelligence, 49:61–
95, May 1991.

[Morris et al., 2001] P. Morris, N. Muscettola, and T. Vidal.
Dynamic control of plans with temporal uncertainty. In
Proc. of IJCAI-01, 2001.

[Muscettolaet al., 1998] N. Muscettola, P.P. Nayak, B. Pell,
and B.C. Williams. Remote agent: to boldly go where no
AI system has gone before.Artificial Intelligence, 103(1-
2):5–48, August 1998.

[Rossiet al., 2004] F. Rossi, K.B. Venable, and N. Yorke-
Smith. Controllability of soft temporal constraint prob-
lems. InProc. CP 2004, pages 588–603, 2004.

[Tsamardinoset al., 2003] I. Tsamardinos, M. E. Pollack,
and S. Ramakrishnan. Assessing the probability of legal
execution of plans with temporal uncertainty. InICAPS-
03 Workshop on Planning under Uncertainty, 2003.

[Vidal and Fargier, 1999] T. Vidal and H. Fargier. Handling
contingency in temporal constraint networks: from con-
sistency to controllabilities.Journal of Experimental &
Theoretical Artificial Intelligence, 11:23–45, 1999.

[Vidal, 2000] T. Vidal. Controllability characterization and
checking in contingent temporal constraint networks. In
Proc. of Seventh Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’2000), 2000.


